The hypoelliptic Laplacian on a compact Lie group
نویسندگان
چکیده
منابع مشابه
Lie group actions on compact
Let G be a homotopically trivial and effective compact Lie group action on a compact manifold N of nonpositive curvature. Under certain assumptions on N we prove that if G has dimension equal to rank of Center π1(N), then G must be connected. Furthermore, if on N there exists a point having negative definite Ricci tensor, then we show that G is the trivial group.
متن کاملThe intrinsic hypoelliptic Laplacian and its heat kernel on unimodular Lie groups
We present an invariant definition of the hypoelliptic Laplacian on sub-Riemannian structures with constant growth vector, using the Popp’s volume form introduced by Montgomery. This definition generalizes the one of the Laplace-Beltrami operator in Riemannian geometry. In the case of left-invariant problems on unimodular Lie groups we prove that it coincides with the usual sum of squares. We t...
متن کاملDesingularizing Compact Lie Group Actions
This note surveys the well-known structure of G-manifolds and summarizes parts of two papers that have not yet appeared: [4], joint with J. Brüning and F. W. Kamber, and [8], joint with I. Prokhorenkov. In particular, from a given manifold on which a compact Lie group acts smoothly, we construct a sequence of manifolds on which the same Lie group acts, but with fewer levels of singular strata. ...
متن کاملthe structure of lie derivations on c*-algebras
نشان می دهیم که هر اشتقاق لی روی یک c^*-جبر به شکل استاندارد است، یعنی می تواند به طور یکتا به مجموع یک اشتقاق لی و یک اثر مرکز مقدار تجزیه شود. کلمات کلیدی: اشتقاق، اشتقاق لی، c^*-جبر.
15 صفحه اولOn Compact Symplectic Manifolds with Lie Group Symmetries
In this note we give a structure theorem for a finite-dimensional subgroup of the automorphism group of a compact symplectic manifold. An application of this result is a simpler and more transparent proof of the classification of compact homogeneous spaces with invariant symplectic structures. We also give another proof of the classification from the general theory of compact homogeneous spaces...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Functional Analysis
سال: 2008
ISSN: 0022-1236
DOI: 10.1016/j.jfa.2008.07.017